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Quantum electrodynamics (QED) is the relativistic quantum 
field theory of electrodynamics. In essence, it describes how light 
and matter interact and is the first theory where full agreement 
between quantum mechanics and special relativity is achieved. 
QED mathematically describes all phenomena involving 
electrically charged particles interacting by means of exchange of 
photons and represents the quantum counterpart of classical 
electrodynamics giving a complete account of matter and light 
interaction. One of the founding fathers of QED, Richard 
Feynman, has called it "the jewel of physics" for its extremely 
accurate predictions of quantities like the anomalous magnetic 
moment of the electron, and the Lamb shift of the energy levels 

of hydrogen.[1]

In technical terms, QED can be described as a perturbation theory 
of the electromagnetic quantum vacuum.
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History

Main article: History of quantum mechanics

The first formulation of a quantum theory describing radiation 
and matter interaction is due to Paul Adrien Maurice Dirac, who, 
during 1920, was first able to compute the coefficient of 

spontaneous emission of an atom.[2]

Dirac described the quantization of the electromagnetic field as 
an ensemble of harmonic oscillators with the introduction of the 
concept of creation and annihilation operators of particles. In the 
following years, with contributions from Wolfgang Pauli, Eugene 
Wigner, Pascual Jordan, Werner Heisenberg and an elegant 

formulation of quantum electrodynamics due to Enrico Fermi,[3] 
physicists came to believe that, in principle, it would be possible 
to perform any computation for any physical process involving 
photons and charged particles. However, further studies by Felix 

Bloch with Arnold Nordsieck,[4] and Victor Weisskopf,[5] in 1937 
and 1939, revealed that such computations were reliable only at a 
first order of perturbation theory, a problem already pointed out 

by Robert Oppenheimer.[6] At higher orders in the series infinities 
emerged, making such computations meaningless and casting 
serious doubts on the internal consistency of the theory itself. 
With no solution for this problem known at the time, it appeared 
that a fundamental incompatibility existed between special 
relativity and quantum mechanics .

Difficulties with the theory increased through the end of 1940. 
Improvements in microwave technology made it possible to take 
more precise measurements of the shift of the levels of a 

hydrogen atom,[7] now known as the Lamb shift and magnetic 

moment of the electron.[8] These experiments unequivocally 
exposed discrepancies which the theory was unable to explain.

A first indication of a possible way out was given by Hans Bethe. 
In 1947, while he was traveling by train to reach Schenectady 

from New York,[9] after giving a talk at the conference at Shelter 
Island on the subject, Bethe completed the first non-relativistic 

computation of the shift of the lines of the 

hydrogen atom as measured by Lamb and Retherford.[10] 
Despite the limitations of the computation, agreement was 
excellent. The idea was simply to attach infinities to 
corrections at mass and charge that were actually fixed to a 
finite value by experiments. In this way, the infinities get 
absorbed in those constants and yield a finite result in good 
agreement with experiments. This procedure was named 
renormalization.
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Shelter Island Conference group photo (Courtesy of 

Archives, National Academy of Sciences).

 

Feynman (center) and 

Oppenheimer (left) at 

Los Alamos.

Based on Bethe's 
intuition and 
fundamental papers on 
the subject by Sin-Itiro 

Tomonaga,[11] Julian 

Schwinger,[12][13] 
Richard Feynman
[14][15][16] and Freeman 

Dyson,[17][18] it was 
finally possible to get 
fully covariant 

formulations that were finite at any order in a 
perturbation series of quantum electrodynamics. Sin-
Itiro Tomonaga, Julian Schwinger and Richard 
Feynman were jointly awarded with a Nobel prize in 

physics in 1965 for their work in this area.[19] Their 
contributions, and those of Freeman Dyson, were 
about covariant and gauge invariant formulations of 
quantum electrodynamics that allow computations of observables at any order of perturbation theory. 
Feynman's mathematical technique, based on his diagrams, initially seemed very different from the field
-theoretic, operator-based approach of Schwinger and Tomonaga, but Freeman Dyson later showed that 

the two approaches were equivalent.[17] Renormalization, the need to attach a physical meaning at 
certain divergences appearing in the theory through integrals, has subsequently become one of the 
fundamental aspects of quantum field theory and has come to be seen as a criterion for a theory's general 
acceptability. Even though renormalization works very well in practice, Feynman was never entirely 
comfortable with its mathematical validity, even referring to renormalization as a "shell game" and 

"hocus pocus".[20]

QED has served as the model and template for all subsequent quantum field theories. One such 
subsequent theory is quantum chromodynamics, which began in the early 1960s and attained its present 
form in the 1975 work by H. David Politzer, Sidney Coleman, David Gross and Frank Wilczek. 

Building on the pioneering work of Schwinger, Gerald Guralnik, Dick Hagen, and Tom Kibble,[21][22] 
Peter Higgs, Jeffrey Goldstone, and others, Sheldon Glashow, Steven Weinberg and Abdus Salam 
independently showed how the weak nuclear force and quantum electrodynamics could be merged into a 
single electroweak force.

Feynman's view of quantum electrodynamics

Introduction

Near the end of his life, Richard P. Feynman gave a series of lectures on QED intended for the lay 
public. These lectures were transcribed and published as Feynman (1985), QED: The strange theory of 

light and matter,[1][20] a classic non-mathematical exposition of QED from the point of view articulated 
below.

The key components of Feynman's presentation of QED are three basic actions.

A photon goes from one place and time to another place and time.■

An electron goes from one place and time to another place and time.■
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Feynman diagram elements

An electron emits or absorbs a photon at a certain place and time.■

These actions are represented in a form of visual 
shorthand by the three basic elements of Feynman 
diagrams: a wavy line for the photon, a straight line 
for the electron and a junction of two straight lines 
and a wavy one for a vertex representing emission or 
absorption of a photon by an electron. These may all 
be seen in the adjacent diagram.

It is important not to over-interpret these diagrams. 
Nothing is implied about how a particle gets from 
one point to another. The diagrams do not imply that 
the particles are moving in straight or curved lines. 
They do not imply that the particles are moving with 
fixed speeds. The fact that the photon is often 
represented, by convention, by a wavy line and not a 
straight one does not imply that it is thought that it is more wavelike than is an electron. The images are 
just symbols to represent the actions above: photons and electrons do, somehow, move from point to 
point and electrons, somehow, emit and absorb photons. We do not know how these things happen, but 
the theory tells us about the probabilities of these things happening.

As well as the visual shorthand for the actions Feynman introduces another kind of shorthand for the 
numerical quantities which tell us about the probabilities. If a photon moves from one place and time – 
in shorthand, A – to another place and time – shorthand, B – the associated quantity is written in 
Feynman's shorthand as P(A to B). The similar quantity for an electron moving from C to D is written E
(C to D). The quantity which tells us about the probability for the emission or absorption of a photon he 
calls 'j'. This is related to, but not the same as, the measured electron charge 'e'.

QED is based on the assumption that complex interactions of many electrons and photons can be 
represented by fitting together a suitable collection of the above three building blocks, and then using 
the probability-quantities to calculate the probability of any such complex interaction. It turns out that 
the basic idea of QED can be communicated while making the assumption that the quantities mentioned 
above are just our everyday probabilities. (A simplification of Feynman's book.) Later on this will be 
corrected to include specifically quantum mathematics, following Feynman.

The basic rules of probabilities that will be used are that a) if an event can happen in a variety of 
different ways then its probability is the sum of the probabilities of the possible ways and b) if a process 
involves a number of independent subprocesses then its probability is the product of the component 
probabilities.

Basic constructions

Suppose we start with one electron at a certain place and time (this place and time being given the 
arbitrary label A) and a photon at another place and time (given the label B). A typical question from a 
physical standpoint is: 'What is the probability of finding an electron at C (another place and a later 
time) and a photon at D (yet another place and time)?'. The simplest process to achieve this end is for the 
electron to move from A to C (an elementary action) and that the photon moves from B to D (another 
elementary action). From a knowledge of the probabilities of each of these subprocesses – E(A to C) and 
P(B to D) – then we would expect to calculate the probability of both happening by multiplying them, 
using rule b) above. This gives a simple estimated answer to our question.
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Compton scattering

 

Addition of probability 

amplitudes as complex numbers

But there are other ways in which the end result could come about. 
The electron might move to a place and time E where it absorbs the 
photon; then move on before emitting another photon at F; then 
move on to C where it is detected, while the new photon moves on 
to D. The probability of this complex process can again be 
calculated by knowing the probabilities of each of the individual 
actions: three electron actions, two photon actions and two vertexes 
– one emission and one absorption. We would expect to find the 
total probability by multiplying the probabilities of each of the 
actions, for any chosen positions of E and F. We then, using rule a) 
above, have to add up all these probabilities for all the alternatives 
for E and F. (This is not elementary in practice, and involves 

integration.) But there is another possibility: that is that the electron first moves to G where it emits a 
photon which goes on to D, while the electron moves on to H, where it absorbs the first photon, before 
moving on to C. Again we can calculate the probability of these possibilities (for all points G and H). 
We then have a better estimation for the total probability by adding the probabilities of these two 
possibilities to our original simple estimate. Incidentally the name given to this process of a photon 
interacting with an electron in this way is Compton Scattering.

There are an infinite number of other intermediate processes in which more and more photons are 
absorbed and/or emitted. For each of these possibilities there is a Feynman diagram describing it. This 
implies a complex computation for the resulting probabilities, but provided it is the case that the more 
complicated the diagram the less it contributes to the result, it is only a matter of time and effort to find 
as accurate an answer as one wants to the original question. This is the basic approach of QED. To 
calculate the probability of any interactive process between electrons and photons it is a matter of first 
noting, with Feynman diagrams, all the possible ways in which the process can be constructed from the 
three basic elements. Each diagram involves some calculation involving definite rules to find the 
associated probability.

That basic scaffolding remains when one moves to a quantum description but some conceptual changes 
are requested. One is that whereas we might expect in our everyday life that there would be some 
constraints on the points to which a particle can move, that is not true in full quantum electrodynamics. 
There is a certain possibility of an electron or photon at A moving as a basic action to any other place 
and time in the universe. That includes places that could only be reached at speeds greater than that of 
light and also earlier times. (An electron moving backwards in time can be viewed as a positron moving 
forward in time.)

Probability amplitudes

Quantum mechanics introduces an important change on the way 
probabilities are computed. It has been found that the quantities 
which we have to use to represent the probabilities are not the usual 
real numbers we use for probabilities in our everyday world, but 
complex numbers which are called probability amplitudes. Feynman 
avoids exposing the reader to the mathematics of complex numbers 
by using a simple but accurate representation of them as arrows on a 
piece of paper or screen. (These must not be confused with the 
arrows of Feynman diagrams which are actually simplified 
representations in two dimensions of a relationship between points 
in three dimensions of space and one of time.) The amplitude-
arrows are fundamental to the description of the world given by 
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Multiplication of probability 

amplitudes as complex numbers

quantum theory. No satisfactory reason has been given for why they are needed. But pragmatically we 
have to accept that they are an essential part of our description of all quantum phenomena. They are 
related to our everyday ideas of probability by the simple rule that the probability of an event is the 
square of the length of the corresponding amplitude-arrow. So, for a given process, if two probability 
amplitudes, v and w, are involved, the probability of the process will be given either by

or

.

The rules as regards adding or multiplying, however, are the same as above. But where you would 
expect to add or multiply probabilities, instead you add or multiply probability amplitudes that now are 
complex numbers.

Addition and multiplication are familiar operations in the theory of 
complex numbers and are given in the figures. The sum is found as 
follows. Let the start of the second arrow be at the end of the first. 
The sum is then a third arrow that goes directly from the start of the 
first to the end of the second. The product of two arrows is an arrow 
whose length is the product of the two lengths. The direction of the 
product is found by adding the angles that each of the two have been 
turned through relative to a reference direction: that gives the angle 
that the product is turned relative to the reference direction.

That change, from probabilities to probability amplitudes, 
complicates the mathematics without changing the basic approach. 

But that change is still not quite enough because it fails to take into account the fact that both photons 
and electrons can be polarized, which is to say that their orientation in space and time have to be taken 
into account. Therefore P(A to B) actually consists of 16 complex numbers, or probability amplitude 
arrows. There are also some minor changes to do with the quantity "j", which may have to be rotated by 
a multiple of 90º for some polarizations, which is only of interest for the detailed bookkeeping.

Associated with the fact that the electron can be polarized is another small necessary detail which is 
connected with the fact that an electron is a Fermion and obeys Fermi-Dirac statistics. The basic rule is 
that if we have the probability amplitude for a given complex process involving more than one electron, 
then when we include (as we always must) the complementary Feynman diagram in which we just 
exchange two electron events, the resulting amplitude is the reverse – the negative – of the first. The 
simplest case would be two electrons starting at A and B ending at C and D. The amplitude would be 
calculated as the "difference", E(A to B)xE(C to D) – E(A to C)xE(B to D), where we would expect, 
from our everyday idea of probabilities, that it would be a sum.

Propagators

Finally, one has to compute P(A to B) and E (C to D) corresponding to the probability amplitudes for the 
photon and the electron respectively. These are essentially the solutions of the Dirac Equation which 
describes the behavior of the electron's probability amplitude and the Klein-Gordon equation which 
describes the behavior of the photon's probability amplitude. These are called Feynman propagators. The 
translation to a notation commonly used in the standard literature is as follows:
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Electron self-energy loop

where a shorthand symbol such as xA stands for the four real numbers which give the time and position 

in three dimensions of the point labeled A.

Mass renormalization

A problem arose historically which held up progress for twenty 
years: although we start with the assumption of three basic "simple" 
actions, the rules of the game say that if we want to calculate the 
probability amplitude for an electron to get from A to B we must 
take into account all the possible ways: all possible Feynman 
diagrams with those end points. Thus there will be a way in which 
the electron travels to C, emits a photon there and then absorbs it 
again at D before moving on to B. Or it could do this kind of thing 
twice, or more. In short we have a fractal-like situation in which if 
we look closely at a line it breaks up into a collection of "simple" 
lines, each of which, if looked at closely, are in turn composed of 
"simple" lines, and so on ad infinitum. This is a very difficult 
situation to handle. If adding that detail only altered things slightly 
then it would not have been too bad, but disaster struck when it was 
found that the simple correction mentioned above led to infinite 
probability amplitudes. In time this problem was "fixed" by the technique of renormalization (see below 
and the article on mass renormalization). However, Feynman himself remained unhappy about it, calling 

it a "dippy process".[20]

Conclusions

Within the above framework physicists were then able to calculate to a high degree of accuracy some of 
the properties of electrons, such as the anomalous magnetic dipole moment. However, as Feynman 
points out, it fails totally to explain why particles such as the electron have the masses they do. "There is 
no theory that adequately explains these numbers. We use the numbers in all our theories, but we don't 
understand them – what they are, or where they come from. I believe that from a fundamental point of 

view, this is a very interesting and serious problem."[23]

Mathematics

Mathematically, QED is an abelian gauge theory with the symmetry group U(1). The gauge field, which 
mediates the interaction between the charged spin-1/2 fields, is the electromagnetic field. The QED 
Lagrangian for a spin-1/2 field interacting with the electromagnetic field is given by the real part of

where 

 are Dirac matrices;

 a bispinor field of spin-1/2 particles (e.g. electron-positron field);

, called "psi-bar", is sometimes referred to as Dirac adjoint;
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 is the gauge covariant derivative;

 is the coupling constant, equal to the electric charge of the bispinor field;
 is the covariant four-potential of the electromagnetic field generated by the electron 

itself;
 is the external field imposed by external source;

 is the electromagnetic field tensor.

Equations of motion

To begin, substituting the definition of D into the Lagrangian gives us:

Next, we can substitute this Lagrangian into the Euler-Lagrange equation of motion for a field:

to find the field equations for QED.

The two terms from this Lagrangian are then:

Substituting these two back into the Euler-Lagrange equation (2) results in:

with complex conjugate:

Bringing the middle term to the right-hand side transforms this second equation into:

The left-hand side is like the original Dirac equation and the right-hand side is the interaction with the 
electromagnetic field.

One further important equation can be found by substituting the Lagrangian into another Euler-Lagrange 

equation, this time for the field, A
µ
:
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The two terms this time are:

and these two terms, when substituted back into (3) give us:

Now if we impose the Lorenz-Gauge condition, i.e. that the divergence of the four potential vanishes 
then we get: 

Interaction picture

This theory can be straightforwardly quantized treating bosonic and fermionic sectors as free. This 
permits to build a set of asymptotic states to start a computation of the probability amplitudes for 
different processes. In order to be able to do so, we have to compute an evolution operator that, for a 
given initial state, will give a final state in such a way to have

This technique is also known as the S-Matrix. Evolution operator is obtained in the interaction picture 
where time evolution is given by the interaction Hamiltonian. So, from equations above is

and so, one has

being T the time ordering operator. This evolution operator has only a meaning as a series and what we 
get here is a perturbation series with a development parameter being fine structure constant. This series 
is named Dyson series.
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Feynman diagrams

Despite the conceptual clarity of this Feynman approach to QED, almost no textbooks follow him in 
their presentation. When performing calculations it is much easier to work with the Fourier transforms 
of the propagators. Quantum physics considers particle's momenta rather than their positions, and it is 
convenient to think of particles as being created or annihilated when they interact. Feynman diagrams 
then look the same, but the lines have different interpretations. The electron line represents an electron 
with a given energy and momentum, with a similar interpretation of the photon line. A vertex diagram 
represents the annihilation of one electron and the creation of another together with the absorption or 
creation of a photon, each having specified energies and momenta.

Using Wick theorem on the terms of the Dyson series, all the terms of the S-matrix for quantum 
electrodynamics can be computed through the technique of Feynman diagrams. In this case rules for 
drawing are the following
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To these rules we must add a further one for closed loops that implies an integration on momenta 

. From them, computations of probability amplitudes are straightforwardly given. An 

example is Compton scattering, with an electron and a photon undergoing elastic scattering. Feynman 
diagrams are in this case
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and so we are able to get the corresponding amplitude at the first order of a perturbation series for S-
matrix:

from which we are able to compute the cross section for this scattering.

Renormalizability

Higher order terms can be straightforwardly computed for the evolution operator but these terms display 
diagrams containing the following simpler ones

■
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One-loop contribution 
to the vacuum 

polarization function 

■

One-loop contribution 
to the electron self-
energy function 

■

One-loop contribution 
to the vertex function 

that, being closed loops, imply the presence of diverging integrals having no mathematical meaning. To 
overcome this difficulty, a technique like renormalization has been devised, producing finite results in 
very close agreement with experiments. It is important to note that a criterion for theory being 
meaningful after renormalization is that the number of diverging diagrams is finite. In this case the 
theory is said renormalizable. The reason for this is that to get observables renormalized one needs a 
finite number of constants to maintain the predictive value of the theory untouched. This is exactly the 
case of quantum electrodynamics displaying just three diverging diagrams. This procedure gives 
observables in very close agreement with experiment as seen e.g. for electron gyromagnetic ratio.

Renormalizability has become an essential criterion for a quantum field theory to be considered as a 
viable one. All the theories describing fundamental interactions, except gravitation whose quantum 
counterpart is presently under very active research, are renormalizable theories.
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Nonconvergence of series

An argument by Freeman Dyson shows that the radius of convergence of the perturbation series in QED 

is zero.[24] The basic argument goes as follows: if the coupling constant were negative, this would be 
equivalent to the Coulomb force constant being negative. This would "reverse" the electromagnetic 
interaction so that like charges would attract and unlike charges would repel. This would render the 
vacuum unstable against decay into a cluster of electrons on one side of the universe and a cluster of 
positrons on the other side of the universe. Because the theory is sick for any negative value of the 
coupling constant, the series do not converge, but are an asymptotic series. This can be taken as a need 
for a new theory, a problem with perturbation theory, or ignored by taking a "shut-up-and-calculate" 
approach.
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